J Med Phys Close
 

Figure 8: (a) Comparison of x-profiles generated by MC simulation with ROPS for 10 × 10 cm2 field defined by the MLC at dmax. (b) Comparison of y-profiles generated by MC simulation with ROPS for 10 × 10 cm2 field defined by the MLC at dmax. (c) Comparison of x-profiles at depth dmax generated by MC simulation of MLC 10 × 10 cm2 field when two jaw settings were used. The brown-colored data are for the simulation with jaws set at 10 × 10 cm2. The blue-colored data were with jaws set at 20 × 14 cm2. (d) Similar comparison for y-profiles at dmax. (e) Similar comparison for x-profiles at 20 cm depth (f) Similar comparison for y-profiles at 20 cm depth. Notice the interleaf leakage in the penumbra area for the y-profiles when the jaws were opened beyond the MLC field. MC = Monte Carlo

Figure 8: (a) Comparison of x-profiles generated by MC simulation with ROPS for 10 × 10 cm2 field defined by the MLC at dmax. (b) Comparison of y-profiles generated by MC simulation with ROPS for 10 × 10 cm2 field defined by the MLC at dmax. (c) Comparison of x-profiles at depth dmax generated by MC simulation of MLC 10 × 10 cm2 field when two jaw settings were used. The brown-colored data are for the simulation with jaws set at 10 × 10 cm2. The blue-colored data were with jaws set at 20 × 14 cm2. (d) Similar comparison for y-profiles at dmax. (e) Similar comparison for x-profiles at 20 cm depth (f) Similar comparison for y-profiles at 20 cm depth. Notice the interleaf leakage in the penumbra area for the y-profiles when the jaws were opened beyond the MLC field. MC = Monte Carlo