Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Reader Login The official journal of AMPI, IOMP and AFOMP      
 Users online: 165  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2015| January-March  | Volume 40 | Issue 1  
    Online since February 27, 2015

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Radiation dose to patients from X-ray radiographic examinations using computed radiography imaging system
Reena Sharma, Sunil Dutt Sharma, Shramika Pawar, Ajay Chaubey, S Kantharia, D A R Babu
January-March 2015, 40(1):29-37
DOI:10.4103/0971-6203.152244  PMID:26150685
The screen-film system is replaced by computed radiography system for recording the images of the patients during X-ray radiography examinations. The change in imaging system requires the re-establishment of the institutional diagnostic reference levels (DRLs) for different types of X-ray examinations conducted at the hospital. For this purpose, patient specific parameters [age, height, weight, body mass index (BMI), object to image distance (OID)] and machine specific parameters (kVp, mAs, distance and field sizes) of 1875 patients during 21 different types of X-ray examinations were recorded for estimating the entrance skin dose (ESD). The ESD for each of these patients were estimated using measured X-ray beam output and the standard value of the back scatter factor. Five number summary was calculated for all the data for their presentation in the Box-Whisker plot, which provides the statistical distribution of the data. The data collected indicates that majorly performed examinations are cervical spine AP, Chest PA and Knee Lat with percentage contributions of 16.05, 16 and 8.27% respectively. The lowest contribution comes from Hip Lat which is about 1.01%. The ratio of measured ESD (maximum to minimum) for these examinations is found to be highest for the cervical spine AP with a value of 50 followed by Thoracic spine AP of 32.36. The ESD ratio for Chest PA, Knee Lat and Lumbar Spine AP are 30.75, 30.4 and 30.2 respectively. The lowest ESD ratio is for Hip Lat which is 2.68. The third quartile values of ESDs are established as the institutional DRLs. The ESD values obtained for 21 different X-ray projections are either comparable or lesser than the reported national/international values.
  12,937 563 9
Up-regulation of Bcl-2 expression in cultured human lymphocytes after exposure to low doses of gamma radiation
Hosein Azimian, Mohammad Taghi Bahreyni-Toossi, Abdul Rahim Rezaei, Houshang Rafatpanah, Tayebeh Hamzehloei, Reza Fardid
January-March 2015, 40(1):38-44
DOI:10.4103/0971-6203.152249  PMID:26150686
Lymphocytes have demonstrated complex molecular responses to induced stress by ionizing radiation. Many of these reactions are mediated through modifications in gene expressions, including the genes involved in apoptosis. The primary aim of this study was to assess the effects of low doses of ionizing radiation on the apoptotic genes, expression levels. The secondary goal was to estimate the time-effect on the modified gene expression caused by low doses of ionizing radiation. Mononuclear cells in culture were exposed to various dose values ranged from 20 to 100 mGy by gamma rays from a Cobalt-60 source. Samples were taken for gene expression analysis at hours 4, 24, 48, 72, and 168 following to exposure. Expression level of two apoptotic genes; BAX (pro-apoptotic) and Bcl-2 (anti-apoptotic) were examined by relative quantitative real-time polymerase chain reaction (PCR), at different time intervals . Radio-sensitivity of peripheral blood mononucleated cells (PBMCs) was measured by the Bcl-2/BAX ratio (as a predictive marker for radio-sensitivity). The non-parametric two independent samples Mann-Whitney U-test were performed to compare means of gene expression. The results of this study revealed that low doses of gamma radiation can induce early down-regulation of the BAX gene of freshly isolated human PBMCs; however, these changes were restored to near normal levels after 168 hours. In most cases, expression of the Bcl-2 anti-apoptotic gene was up-regulated. Four hours following to exposure to low doses of gamma radiation, apoptotic gene expression is modified, this is manifested as adaptive response. Modification of these gene expressions seems to be a principle pathway in the early radioresistance response. In our study, we found that these changes were temporary and faded completely within a week.
  4,265 145 7
Effect of anode/filter combination on average glandular dose in mammography
Michal Biegala, Teresa Jakubowska, Karolina Markowska
January-March 2015, 40(1):45-51
DOI:10.4103/0971-6203.152251  PMID:26150687
A comparative analysis of the mean glandular doses was conducted in 100 female patients who underwent screening mammography in 2011 and 2013. Siemens Mammomat Novation with the application of the W/Rh anode/filter combination was used in 2011, whereas in 2013 anode/filter combination was Mo/Mo or Mo/Rh. The functioning of mammography was checked and the effectiveness of the automatic exposure control (AEC) system was verified by measuring compensation of changes in the phantom thickness and measuring tube voltage. On the base of exposure parameters, an average glandular dose for each of 100 female patients was estimated. The images obtained by using AEC system had the acceptable threshold contrast visibility irrespective of the applied anode/filter combination. Mean glandular doses in the females, examined with the application of the W/Rh anode/filter combination, were on average 23.6% lower than that of the Mo/Mo or Mo/Rh anode/filter combinations. It is recommended to use a combination of the W/Rh anode /filter which exhibited lower mean glandular doses.
  2,859 228 1
Monte Carlo-based dose calculation for 32 P patch source for superficial brachytherapy applications
Sridhar Sahoo, Selvam T Palani, SK Saxena, D A R Babu, A Dash
January-March 2015, 40(1):13-17
DOI:10.4103/0971-6203.152232  PMID:26150682
Skin cancer treatment involving 32 P source is an easy, less expensive method of treatment limited to small and superficial lesions of approximately 1 mm deep. Bhabha Atomic Research Centre (BARC) has indigenously developed 32 P nafion-based patch source (1 cm Χ 1 cm) for treating skin cancer. For this source, the values of dose per unit activity at different depths including dose profiles in water are calculated using the EGSnrc-based Monte Carlo code system. For an initial activity of 1 Bq distributed in 1 cm 2 surface area of the source, the calculated central axis depth dose values are 3.62 Χ 10 -10 GyBq -1 and 8.41 Χ 10 -11 GyBq -1 at 0.0125 and 1 mm depths in water, respectively. Hence, the treatment time calculated for delivering therapeutic dose of 30 Gy at 1 mm depth along the central axis of the source involving 37 MBq activity is about 2.7 hrs.
  2,717 282 -
A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files
Juan Agustin Calama Santiago, Miguel Angel Infante Utrilla, Maria Elisa Lavado Rodriguez
January-March 2015, 40(1):5-12
DOI:10.4103/0971-6203.152231  PMID:26150681
This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose-volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.
  2,522 261 -
Transition from image intensifier to flat panel detector in interventional cardiology: Impact of radiation dose
Roshan S Livingstone, David Chase, Anna Varghese, Paul V George, Oommen K George
January-March 2015, 40(1):24-28
DOI:10.4103/0971-6203.152241  PMID:26150684
Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its varied advantages compared to the conventional image intensifier (II) systems. It is not clear whether FPD imparts lower radiation doses compared to II systems though a few studies support this finding. This study intends to compare radiation doses from II and FPD systems for coronaryangiography (CAG) and Percutaneous Transluminal Coronary Angioplasty (PTCA) performed in a tertiary referral center. Radiation doses were measured using dose area product (DAP) meter from patients who underwent CAG (n = 222) and PTCA (n = 75) performed using FPD angiography system. The DAP values from FPD were compared with earlier reported data using II systems from the same referral center where the study was conducted. The mean DAP values from FPD system for CAG and PTCA were 24.35 and 63.64 Gycm 2 and those from II system were 27.71 and 65.44 Gycm 2 . Transition from II to FPD system requires stringent dose optimization strategies right from the initial period of installation.
  2,222 206 1
Radiological health assessment of natural radioactivity in the vicinity of Obajana cement factory, North Central Nigeria
Omoniyi Matthew Isinkaye, Nnamdi N Jibiri, Adebowale A Olomide
January-March 2015, 40(1):52-59
DOI:10.4103/0971-6203.152256  PMID:26150688
Measurements of activity concentrations of natural radionuclides in and around Obajana cement factory, North Central Nigeria have been carried out in this study to determine the activity levels of natural radionuclides in different environmental matrices in order to assess the radiological health hazards associated with the use of these matrices by the local population. A low-background Pb-shielded gamma spectroscopic counting assembly utilizing NaI (Tl) detector was employed for the measurements. The results show that sediment samples have the highest activity concentrations of all the radionuclides relative to soil, farmland soil, and rock samples. The radium equivalent activity and indoor gamma dose rates together with the corresponding annual effective indoor doses evaluated were found to be lower than their permissible limits. It suffices to say, that contrary to age-long fear of radiation risks to the population in the vicinity of the cement factory, no excessive radiological health hazards either indoors and/or outdoors is envisaged. Therefore, the environmental matrices around the factory could be used without any restrictions.
  2,079 205 4
What benefit could be derived from on-line adaptive prostate radiotherapy using rectal diameter as a predictor of motion?
Richard Oates, Suki Gill, Farshad Foroudi, Michael Lim Joon, Michal Schneider, Mathias Bressel, Tomas Kron
January-March 2015, 40(1):18-23
DOI:10.4103/0971-6203.152237  PMID:26150683
This study investigated a relationship between rectum diameter and prostate motion during treatment with a view to reducing planning target volume (PTV) margins for an adaptive protocol. One hundred and ninety-four cone-beam computed tomography (CBCT) images of 10 patients were used to relate rectum diameter on CBCT to prostate intrafraction displacement. A threshold rectum diameter was used to model the impact of an adaptive PTV margin on rectum and bladder dose. Potential dose escalation with a 6 mm uniform margin adaptive protocol was compared to a PTV margin of 10 mm expansion of the clinical target volume (CTV) except 6 mm posterior. Of 194 fractions, 104 had a maximum rectal diameter of ≤3.5 cm. The prostate displaced ≤4 mm in 102 of those fractions. Changing from a standard to an adaptive PTV margin reduced the volume of rectum receiving 25, 50, 60, and 70 Gy by around 12, 9, 10, and 16%, respectively and bladder by approximately 21, 27, 29, and 35%, respectively. An average dose escalation of 4.2 Gy may be possible with an adaptive prostate radiotherapy protocol. In conclusion, a relationship between the prostate motion and the diameter of the rectum on CBCT potentially could enable daily adaptive radiotherapy which can be implemented from the first fraction.
  1,911 175 1
IMRT, IGRT, and other high technology becomes standard in external beam radiotherapy: But is image-guided brachytherapy for cervical cancer too expensive?
Jamema V Swamidas, Christian Kirisits
January-March 2015, 40(1):1-4
DOI:10.4103/0971-6203.152229  PMID:26150680
  1,734 210 -
  Search this journal
  Advance Search
  Editorial Board 
  The Journal 
  The Association 
  Contact Us