Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Reader Login The official journal of AMPI, IOMP and AFOMP      
 Users online: 1077  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
  Citation statistics : Table of Contents
   2011| April-June  | Volume 36 | Issue 2  
    Online since April 18, 2011

 
 
  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
 
Hide all abstracts  Show selected abstracts  Export selected to
  Cited Viewed PDF
REVIEW ARTICLE
Consideration of the radiation dose delivered away from the treatment field to patients in radiotherapy
Michael L Taylor, Tomas Kron
April-June 2011, 36(2):59-71
DOI:10.4103/0971-6203.79686  PMID:21731221
Radiation delivery to cancer patients for radiotherapy is invariably accompanied by unwanted radiation to other parts of the patient's body. Traditionally, considerable effort has been made to calculate and measure the radiation dose to the target as well as to nearby critical structures. Only recently has attention been focused also on the relatively low doses that exist far from the primary radiation beams. In several clinical scenarios, such doses have been associated with cardiac toxicity as well as an increased risk of secondary cancer induction. Out-of-field dose is a result of leakage and scatter and generally difficult to predict accurately. The present review aims to present existing data, from measurements and calculations,and discuss its implications for radiotherapy.
  16 6,863 332
ORIGINAL ARTICLES
Dosimetric effect of multileaf collimator leaf width in intensity-modulated radiotherapy delivery techniques for small- and large-volume targets
SA Yoganathan, Karthick Raj Mani, KJ Maria Das, Arpita Agarwal, Shaleen Kumar
April-June 2011, 36(2):72-77
DOI:10.4103/0971-6203.79690  PMID:21731222
The purpose of this study was to evaluate the dosimetric effect of the leaf width of a multileaf collimator (MLC) in intensity-modulated radiotherapy (IMRT) delivery techniques for small- and large-volume targets. We retrospectively selected previously treated 5 intracranial and 5 head-neck patients for this study to represent small- (range, 18.37-72.75 cc; mean, 42.99 cc) and large-volume (range, 312.31-472.84 cc; mean, 361.14 cc) targets. A 6-MV photon beam data was configured for Brianlab m3 (3 mm), Varian Millennium 120 (5 mm) and Millennium 80 (10 mm) MLCs in the Eclipse treatment-planning system. Sliding window and step-shoot IMRT plans were generated for intracranial patients using all the above-mentioned MLCs; but due to the field size limitation of Brainlab MLC, we used only 5-mm and 10-mm MLCs in the head-and-neck patients. Target conformity, dose to the critical organs and dose to normal tissues were recorded and evaluated. Although the 3-mm MLC resulted in better target conformity (mean difference of 7.7% over 5-mm MLC and 12.7% over 10-mm MLC) over other MLCs for small-volume targets, it increased the total monitor units of the plans. No appreciable differences in terms of target conformity,organ at risk and normal-tissue sparing were observed between the 5-mm and 10-mm MLCs for large-volume targets. The effect of MLC leaf width was not quantifiably different in sliding window and step and shoot techniques. In addition, we observed that there was no additional benefit to the sliding-window (SW) technique when compared to the step-shoot (SS) technique as a result of reduction of MLC leaf width.
  3 3,497 255
An overview of radioactive waste disposal procedures of a nuclear medicine department
R Ravichandran, JP Binukumar, Rajan Sreeram, LS Arunkumar
April-June 2011, 36(2):95-99
DOI:10.4103/0971-6203.79692  PMID:21731225
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
  2 8,413 211
TECHNICAL NOTES
Dosimetric comparison of high dose rate brachytherapy and intensity-modulated radiation therapy for cervical carcinoma
B Shwetha, M Ravikumar, Siddanna R Palled, Sanjay S Supe, S Sathiyan
April-June 2011, 36(2):111-116
DOI:10.4103/0971-6203.79687  PMID:21731228
Intracavitary brachytherapy is an integral part of radiotherapy for locally advanced gynecologic malignancies. A dosimetric intercomparison of high dose rate intracavitary brachytherapy (HDR_BT) and intensity-modulated radiotherapy in cervical carcinoma has been made in the present study. CT scan images of 10 patients treated with HDR_BT were used for this study. A sliding-window IMRT (IMRT_SW) and step-and-shoot IMRT plans were generated using 6-MV X-rays. The cumulative dose volume histograms of target, bladder, rectum and normal tissue were analyzed for both techniques and dose distributions were compared. It was seen that the pear-shaped dose distribution characteristic of intracavitary brachytherapy with sharp dose fall-off outside the target could be achieved with IMRT. The integral dose to planning target volume was significantly higher with HDR_BT in comparison with IMRT. Significant differences between the two techniques were seen for doses to 1 cc and 2 cc of rectum, while the differences in 1 cc and 2 cc doses to bladder were not significant. The integral doses to the nontarget critical and normal structures were smaller with HDR_BT and with IMRT. It is concluded that IMRT can be the choice of treatment in case of non-availability of HDR brachytherapy facilities or when noninvasive treatments are preferred
  2 5,115 215
ORIGINAL ARTICLES
Isoeffect calculations with the linear quadratic and its extensions: An examination of model-dependent estimates at doses relevant to hypofractionation
Frederick W McKenna, Salahuddin Ahmad
April-June 2011, 36(2):100-106
DOI:10.4103/0971-6203.79689  PMID:21731226
The linear quadratic is the standard model for calculating isoeffects in the range of conventional dose per fraction. However, the use of hypofractionation and stereotactic body radiation therapy can call for isoeffect calculations for large doses per fraction. The purpose of this work is to investigate the linear quadratic at large doses per fraction. The linear quadratic is compared to models that incorporate effects such as dose protraction, whose purpose is to extend the useful range of the linear quadratic to larger doses. The linear quadratic and extended linear quadratic models are fit to 4 data sets. The model-predicted isoeffects for these data sets are calculated. It is found that the linear quadratic and extended linear quadratic predict different isoeffect curves for certain data sets. However, for these data sets, by appropriate selection of a α/β ratio, the linear quadratic can well approximate the extended linear quadratic models. In particular, it is found that a α/β ratio of 0.5 well approximates the extended linear quadratic isoeffect curve for 2 prostate cell lines for conventional and moderate doses per fraction.
  1 3,078 134
A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: A performance evaluation study
Ranganathan Vaitheeswaran, VK Sathiya Narayanan, Janhavi R Bhangle, Amit Nirhali, Namita Kumar, Sumit Basu, Vikram Maiya
April-June 2011, 36(2):85-94
DOI:10.4103/0971-6203.79693  PMID:21731224
The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm; (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm; (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) [~ 2% - 5% improvement] and Homogeneity Index (HI) [~ 4% - 10% improvement] as compared to GEM and FSA algorithms; (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are about 20% smoother than those obtained in GEM and FSA algorithms. In summary, the study demonstrates that hybrid algorithms can be effectively used for fast optimization of beam weights in AB-IMRT.
  1 3,239 109
TECHNICAL NOTES
Testing of a treatment planning system with beam data from IAEA TECDOC 1540
BJ Healy, RL Murry
April-June 2011, 36(2):107-110
DOI:10.4103/0971-6203.79688  PMID:21731227
Quality assurance of external-beam treatment-planning systems is recommended, and this can be partly achieved with predefined type tests. The beam data and test geometries of IAEA TECDOC 1540 have been used to test the analytical anisotropic algorithm (AAA) and pencil-beam convolution (PBC) algorithm of the Varian Eclipse treatment planning system. Beam models were created in Eclipse for 6 MV, 10 MV and 18 MV from the available beam data. Twelve test geometries were re-created in Eclipse, and the differences between Eclipse dose calculations and dose measurements were recorded. The AAA algorithm generally performed better than the PBC algorithm for the 12 tests, but both algorithms did not meet predefined tolerances for asymmetric wedge fields. An in-house monitor unit check program based on collimator and phantom scatter factors with tissue-phantom ratios was also tested and its calculations were found to agree with measurements to within 3.2% for on-axis points.
  1 3,332 188
EDITORIAL
Molecular imaging-challenges, opportunities and caveats
AK Shukla
April-June 2011, 36(2):57-58
DOI:10.4103/0971-6203.79684  PMID:21731220
  - 2,338 169
NEWS AND EVENTS
News and Events
T Ganesh
April-June 2011, 36(2):117-121
  - 1,914 80
ORIGINAL ARTICLES
Feasibility of deformation-independent tumor-tracking radiotherapy during respiration
Seonkyu Kim, Myonggeun Yoon, Dong Ho Shin, Dongwook Kim, Sangyeob Lee, Se Byeong Lee, Sung Yong Park, Sang Hyuk Song
April-June 2011, 36(2):78-84
DOI:10.4103/0971-6203.79691  PMID:21731223
To evaluate the feasibility of tumor-tracking radiotherapy that does not consider tumor deformation during respiration. Four-dimensional computed tomography (4D-CT) data, which considers 10 phases of the respiration cycle, were acquired in 4 patients with lung cancer and 4 patients with liver cancer. Initial treatment plans were established at the end of the inhalation phase (phase 1). As a simulation of deformation-free tumor-tracking radiotherapy, the beam center of the initial plan was moved to the tumor center for all other phases, and the tumor shape acquired from phase 1 was used for all 10 phases. The feasibility of this method was analyzed based on assessment of equivalent uniform dose (EUD), homogeneity index (HI) and coverage index (COV). In photon radiation treatment, movement-induced dose reduction was not particularly significant, with 0.5%, 17.3% and 2.8% average variation in EUD, HI and COV, respectively. In proton radiation treatment, movement-induced dose reduction was more significant, with 0.3%, 40.5% and 2.2% average variation in EUD, HI and COV, respectively. Proton treatment is more sensitive to tumor movement than is photon treatment, and that it is reasonable to disregard tumor deformation during photon therapy employing tumor-tracking radiotherapy.
  - 3,843 89
 
  Search this journal
    
  Advance Search
 
  Editorial Board 
  The Journal 
  The Association 
  Alerting 
  Feedback 
  Contact Us