Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2020  |  Volume : 45  |  Issue : 3  |  Page : 143--147

Dose calculation comparisons between three modern treatment planning systems


Courtney Bosse1, Ganesh Narayanasamy2, Daniel Saenz3, Pamela Myers3, Neil Kirby3, Karl Rasmussen3, Panayiotis Mavroidis4, Niko Papanikolaou3, Sotirios Stathakis3 
1 Radiation Oncology, Colorado Associates in Medical Physics, Colorado Springs, CO 80907, USA
2 Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
3 Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
4 Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA

Correspondence Address:
Ganesh Narayanasamy
Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
USA
Dr. Sotirios Stathakis
Department of Radiation Oncology, Division of Medical Physics, Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX
USA

Purpose: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. Materials and Methods: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. Results: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. Conclusion: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.


How to cite this article:
Bosse C, Narayanasamy G, Saenz D, Myers P, Kirby N, Rasmussen K, Mavroidis P, Papanikolaou N, Stathakis S. Dose calculation comparisons between three modern treatment planning systems.J Med Phys 2020;45:143-147


How to cite this URL:
Bosse C, Narayanasamy G, Saenz D, Myers P, Kirby N, Rasmussen K, Mavroidis P, Papanikolaou N, Stathakis S. Dose calculation comparisons between three modern treatment planning systems. J Med Phys [serial online] 2020 [cited 2020 Oct 22 ];45:143-147
Available from: https://www.jmp.org.in/article.asp?issn=0971-6203;year=2020;volume=45;issue=3;spage=143;epage=147;aulast=Bosse;type=0