Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2020  |  Volume : 45  |  Issue : 2  |  Page : 59--65

Characterization and performance evaluation of the first-proton therapy facility in India


Dayananda Sharma Shamurailatpam1, A Manikandan1, K Ganapathy1, MP Noufal1, Kartikeshwar C Patro1, T Rajesh1, R Jalali2 
1 Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
2 Department of Radiation Oncology, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. Dayananda Sharma Shamurailatpam
Department of Medical Physics, Apollo Proton Cancer Centre, 100 Feet Road Tharamani, Chennai - 400 053, Tamil Nadu
India

Purpose: The purpose of this study is to evaluate the performance characteristic of volumetric image-guided dedicated-nozzle pencil beam-scanning proton therapy (PT) system. Materials and Methods: PT system was characterized for electromechanical, image quality, and registration accuracy. Proton beam of 70.2–226.2 MeV was characterized for short- and long-term reproducibility in integrated depth dose; spot profile characteristics at different air gap and gantry angle; positioning accuracy of single and pattern of spot; dose linearity, reproducibility and consistency. All measurements were carried out using various X-ray and proton-beam specific detectors following standard protocols. Results: All electro-mechanical, imaging, and safety parameters performed well within the specified tolerance limit. The image registration errors along three translation and three rotational axes were ≤0.5 mm and ≤0.2° for both point-based and intensity-based auto-registration. Distal range (R90) and distal dose fall-off (DDF) of 70.2–226.2 MeV proton beams were within 1 mm of calculated values based on the international commission on radiation units and measurements 49 and 0.0156× R90, respectively. The R90and DDF were reproducible within a standard deviation of 0.05 g/cm2 during the first 8 months. Dose were linear from 18.5 (0.011 MU/spot) to 8405 (5 MU/spot) MU, reproducible within 0.5% in 5 consecutive days and consistent within 0.8% for full rotation. The cGy/MU for 70.2–226.2MeV was consistent within 0.5%. In-air X(Y) spot-sigma at isocenter varies from 2.96 (3.00) mm to 6.68 (6.52) mm for 70.2–226.2 MeV. Maximum variation of spot-sigma with air-gap of ±20 cm was ±0.36 mm (5.28%) and ±0.82 mm (±12.5%) along X- and Y-direction and 3.56% for full rotation. Relative spot positions were accurate within ±0.6 mm. The planned and delivered spot pattern of known complex geometry agreed with (γ%≤1) for 1% @ 1 mm >98% for representative five-proton energies at four gantry angle. Conclusion: The PT-system performed well within the expected accuracy level and consistent over a period of 8 months. The methodology and data presented here may help upcoming modern PT center during their crucial phase of commissioning.


How to cite this article:
Shamurailatpam DS, Manikandan A, Ganapathy K, Noufal M P, Patro KC, Rajesh T, Jalali R. Characterization and performance evaluation of the first-proton therapy facility in India.J Med Phys 2020;45:59-65


How to cite this URL:
Shamurailatpam DS, Manikandan A, Ganapathy K, Noufal M P, Patro KC, Rajesh T, Jalali R. Characterization and performance evaluation of the first-proton therapy facility in India. J Med Phys [serial online] 2020 [cited 2020 Oct 29 ];45:59-65
Available from: https://www.jmp.org.in/article.asp?issn=0971-6203;year=2020;volume=45;issue=2;spage=59;epage=65;aulast=Shamurailatpam;type=0