Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2018  |  Volume : 43  |  Issue : 3  |  Page : 173--178

Dosimetry of 175Ytterbium-poly (amidoamine) therapy for humans' organs


Navideh Aghaei-Amirkhizi1, Sodeh Sadjadi2, Leila Moghaddam-Banaem2, Mitra Athari-Allaf3, Fariba Johari-Deha5 
1 Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University; Department of Radiopharmacy and Radioisotopes Research, Applied of Radiation School, Nuclear Science and Technology Research Institute, Tehran, Iran
2 Department of Production and Separation of Isotopes, Nuclear Material and Fuel School, Nuclear Science and Technology Research Institute, Tehran, Iran
3 Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Correspondence Address:
Dr. Fariba Johari-Deha
Department of Radiopharmacy and Radioisotopes Research, Applied of Radiation School, Nuclear Science and Technology Research Institute, End of Kargar Street, Tehran
Iran
Dr. Leila Moghaddam-Banaem
Department of Production and Separation of Isotopes, Nuclear Material and Fuel School, Nuclear Science and Technology Research Institute, End of Kargar Street, Tehran
Iran

Purpose: This investigation focuses on biodistribution of irradiated dendrimer encapsulated ytterbium-175 (175Yb) and to estimate the absorbed dose from intravenous injection of PAMAM encapsulated 175Yb to human organs. Methods: A dendrimer compound containing an average of 55 Yb+3 ions per dendrimer was prepared and irradiated with neutrons for 2h at 3×1011 n.cm-2s-1 neutron flux. The resulting mixture was injected into a group of tumor bearing mice and the mice were excised, weighed and counted at certain times to study the biodistribution. The human organs absorbed dose was assessed by MIRD schema and MCNP simulation. Results: The specific activity and radiochemical purity of the irradiated nano-composite were 7MBq/mg and >99% respectively. The rapid up take of dendrimer was in liver, lung, and, spleen. MIRD and MCNPX were applied for dose estimation. The human absorbed dose in liver, lung, spleen, kidney and bone that simulated by MCNP are 1.266, 0.8081, 0.8347, 0.03979 and 0.01706 mGy/MBq respectively and these values for MIRD schema are 1.351, 0.73, 1.03, 0.039, and 0.0097 mGy/MBq respectively. Conclusion: The results showed that 175Yb-PAMAM nano-radiopharmaceutical has potential of application for liver and lung tumors.


How to cite this article:
Aghaei-Amirkhizi N, Sadjadi S, Moghaddam-Banaem L, Athari-Allaf M, Johari-Deha F. Dosimetry of 175Ytterbium-poly (amidoamine) therapy for humans' organs.J Med Phys 2018;43:173-178


How to cite this URL:
Aghaei-Amirkhizi N, Sadjadi S, Moghaddam-Banaem L, Athari-Allaf M, Johari-Deha F. Dosimetry of 175Ytterbium-poly (amidoamine) therapy for humans' organs. J Med Phys [serial online] 2018 [cited 2021 Oct 19 ];43:173-178
Available from: https://www.jmp.org.in/article.asp?issn=0971-6203;year=2018;volume=43;issue=3;spage=173;epage=178;aulast=Aghaei-Amirkhizi;type=0