Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2006  |  Volume : 31  |  Issue : 1  |  Page : 28--35

Performance evaluation of a dedicated computed tomography scanner used for virtual simulation using in-house fabricated CT phantoms


DS Sharma1, SD Sharma2, KK Sanu2, S Saju1, DD Deshpande1, S Kannan2 
1 Department of Medical Physics, Tata Memorial Hospital, Parel, Mumbai, India
2 Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Anushaktinagar, Mumbai, India

Correspondence Address:
S D Sharma
Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, CT&CRS Building, Anushaktinagar, Mumbai - 400 094
India

Comprehensive tests on single slice CT scanner was carried out using in-house fabricated phantoms/test tools following AAPM recommended methods to independently validate the auto-performance test (APT) results. Test results of all the electromechanical parameters were found within the specified limits. Radiation and sensitivity profile widths were within 0.05 cm of the set slice thickness. Effective energy corresponding to nominal kVp of 80, 110 and 130 were 49.99, 55.08 and 59.48 keV, respectively. Percentage noise obtained by APT was 1.32% while the independently measured value was 0.38%. Observed contrast resolutions by independent method at 0.78% and 12% contrast difference were 4 mm and 1.25 mm (= 4 lp/cm) respectively. However, high contrast resolution (limiting spatial resolution) by APT at 50, 10 and 2% MTF levels were 9, 12.5 and 14.1 lp/cm respectively. Difference in calculated and measured CT numbers of water, air, teflon, acrylic, polystyrene and polypropylene were in the range of 0 to 24 HU, while this difference was 46 and 94 HU in case of nylon and bakelite respectively. The contrast scale determined using CT linearity phantom was 1.99810-4 cm-1/CT number. CT dose index (CTDI) and weighted CTDI (CTDIw) measured at different kVp for standard head and body phantoms were smaller than manufacturer-specified and system-calculated values and were found within the manufacturer-specified limit of 20%. Measured CTDIs on surface (head: 3.6 cGy and body: 2.6 cGy) and at the center (3.3 cGy, head; and 1.2 cGy, body) were comparable to reported values of other similar CT scanners and were also within the industry-quoted CTDI range. Comprehensive QA and independent validation of APT results are necessary to obtain baseline data for CT virtual simulation.


How to cite this article:
Sharma D S, Sharma S D, Sanu K K, Saju S, Deshpande D D, Kannan S. Performance evaluation of a dedicated computed tomography scanner used for virtual simulation using in-house fabricated CT phantoms.J Med Phys 2006;31:28-35


How to cite this URL:
Sharma D S, Sharma S D, Sanu K K, Saju S, Deshpande D D, Kannan S. Performance evaluation of a dedicated computed tomography scanner used for virtual simulation using in-house fabricated CT phantoms. J Med Phys [serial online] 2006 [cited 2021 Dec 2 ];31:28-35
Available from: https://www.jmp.org.in/article.asp?issn=0971-6203;year=2006;volume=31;issue=1;spage=28;epage=35;aulast=Sharma;type=0