Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 163  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 46  |  Issue : 1  |  Page : 26-32

Probability distribution of pixel intensities of ebt3 films and its application in the correction of uncertainty budget


1 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
2 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai, Maharashtra, India

Correspondence Address:
Mr. Rahul Kumar Chaudhary
Radiological Physics and Advisory Division, CT and CRS Building, Bhabha Atomic Research Centre, Anushaktinagar, Mumbai - 400 094, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_94_20

Rights and Permissions

Background and Aim: Modern radiotherapy modalities, such as Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy involve complex dose delivery. The dose delivery is complex as it involves beam modulation, hence, manual dose calculations for these techniques are not possible. Film dosimetry is commonly used method of dose verification for these modalities because of the advantages associated with it. The quantification of uncertainty associated with a film dosimetry system under clinical use becomes important for accurate dosimetry. The spread in the distribution of the pixel values (PV) of the irradiated film contributes to the uncertainty. The probability distribution (PD) of the PV was studied for the clinical photon beam energies of 6, 10, and 15 MV. Methods and Materials: Gafchromic EBT3 film and EPSON 10000XL flatbed scanner were used for this purpose and using the resulting PD, the uncertainty budgets for these energies in the red, green and blue color channels were estimated. Results: The PV of exposed films for the energies studied follows t-distribution, the sum of the squares of the deviation of the measured data from the fitted value was of the order of 10−7, this indicates the goodness of fit. The “t” value corrected combined standard uncertainty (CSU) at 1σ confidence level for exposed film and dose measurement at 200 cGy were 1.42%, 1.48%, and 1.63% and 1.99%, 3.23%, and 5.08% for 6, 10, and 15 MV energies, respectively, in the red colour channel. Conclusion: In the case of the limited number of measurements of a quantity, the SU values must be corrected using the “t” value to get the correct CSU.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed72    
    Printed0    
    Emailed0    
    PDF Downloaded38    
    Comments [Add]    

Recommend this journal