Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 492  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2020  |  Volume : 45  |  Issue : 3  |  Page : 143-147

Dose calculation comparisons between three modern treatment planning systems

1 Radiation Oncology, Colorado Associates in Medical Physics, Colorado Springs, CO 80907, USA
2 Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
3 Mays Cancer Center, MD Anderson Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
4 Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA

Correspondence Address:
Ganesh Narayanasamy
Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
Dr. Sotirios Stathakis
Department of Radiation Oncology, Division of Medical Physics, Cancer Therapy and Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), San Antonio, TX
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmp.JMP_111_19

Rights and Permissions

Purpose: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. Materials and Methods: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. Results: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. Conclusion: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded587    
    Comments [Add]    
    Cited by others 1    

Recommend this journal