Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 147  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2018  |  Volume : 43  |  Issue : 1  |  Page : 1-8

Monte carlo investigation of photon beam characteristics and its variation with incident electron beam parameters for indigenous medical linear accelerator

1 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
2 Radiological Safety Division, Atomic Energy Regulatory Board; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
3 Technology Innovation Department, Society for Applied Microwave Electronics Engineering and Research, Mumbai, India
4 Department of Medical Physics, Tata Memorial Hospital, Mumbai, India

Correspondence Address:
Subhalaxmi Mishra
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Safety and Environment Group, Mumbai - 400 09, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmp.JMP_125_17

Rights and Permissions

Purpose: A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Materials and Methods: Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm3 ion chamber). Results: The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. Conclusions: A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded186    
    Comments [Add]    

Recommend this journal