Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 526  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2016  |  Volume : 41  |  Issue : 2  |  Page : 149-152

Build-up material requirements in clinical dosimetry during total body irradiation treatments

1 Department of Radiation Oncology, Chris O'Brien Lifehouse, Chris O'Brien Lifehouse Centre; Institute of Medical Physics, University of Sydney, Camperdown, NSW, Australia
2 Department of Radiation Oncology, Chris O'Brien Lifehouse, Chris O'Brien Lifehouse Centre, Camperdown, NSW, Australia
3 Genesis Care - Mater Sydney Radiation Oncology, Sydney, NSW, Australia

Correspondence Address:
Martin Butson
Chris O' Brien Lifehouse Centre, Missenden Road, Camperdown, Sydney, NSW
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-6203.181632

Rights and Permissions

Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83–90% (93–97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm2. As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded177    
    Comments [Add]    
    Cited by others 1    

Recommend this journal