Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 546  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2009  |  Volume : 34  |  Issue : 4  |  Page : 206-211

Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer

1 University of Adelaide, School of Chemistry and Physics, North Terrace, 5000 SA, Australia; University of Oradea, Faculty of Science, 1 Universitatii str, Oradea, Romania
2 University of Adelaide, School of Chemistry and Physics, North Terrace, 5000 SA, Australia ; Royal Adelaide Hospital, North Terrace, 5000 SA, Australia

Correspondence Address:
Loredana G Marcu
University of Oradea, Faculty of Science, 1 Universitatii str, Oradea, Romania

Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-6203.56081

Rights and Permissions

Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling) is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded337    
    Comments [Add]    
    Cited by others 8    

Recommend this journal