Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 43  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2009  |  Volume : 34  |  Issue : 1  |  Page : 37-42

Ultrafast bold fMRI using single-shot spin-echo echo planar imaging


1 Department of Biophysics and Clinical MRI Methods, Faculty of Medicine and Pharmacy, University of Fez, Fez, Morocco; Institute of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
2 Institute of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
3 Neurology Department, University Hospital of Fez, Fez, Morocco
4 Institute of Biomedical Engineering, ETH, Zurich, Switzerland

Correspondence Address:
Said Boujraf
Department of Biophysics and Clinical MRI Methods, Faculty of Medicine and Pharmacy, University of Fez, BP. 1893; Km 2.200, Sidi Hrazem Road, Fez 30000; Morocco

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.48719

Rights and Permissions

The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD) contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE) have been used to shorten readout trains in single-shot (SS) echo planar imaging (EPI). This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE) imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3552    
    Printed132    
    Emailed0    
    PDF Downloaded200    
    Comments [Add]    
    Cited by others 4    

Recommend this journal