Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2019  |  Volume : 44  |  Issue : 2  |  Page : 77--83

Investigation of internal target volumes using device and deviceless four-dimensional respiratory monitoring systems for moving targets in four-dimensional computed tomography acquisition


Raghavendra Holla1, D Khanna2, Shubhangi Barsing4, Bhaskaran K Pillai4, Tharmarnadar Ganesh3 
1 Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu; Department of Medical Physics, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
2 Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
3 Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, India

Correspondence Address:
Dr. D Khanna
Department of Physics, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore - 641 114, Tamil Nadu
India

Aims and Objectives: The influence of target motion on the reconstructed internal target volume (ITV) for device-based (DB) external surrogate system and Smart deviceless (DL) 4-dimensional (4D) system were compared in a controlled phantom experiment. The volumetric changes in reconstructed ITVs from the average intensity projection (AveIP) images using DB method (Anzai Respiratory Gating System, ANZAI MEDICAL CO., LTD, Japan) and DL method (Smart deviceless 4D system by GE Medical Systems (Chicago, USA)) with the theoretical true volume (ITVth) for moving target with the increasing target motion in anterior-posterior (A-P), lateral (left-right [L-R]) and inferior-superior (S-I) directions were assessed. Materials and Methods: 4D computed tomography (4DCT) of CIRS dynamic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA, USA) with 2.5 cm diameter spherical target of volume 8.2 cc programmed to move in a cos4(x) motion pattern placed in the lung volume were acquired for various target motion pattern using DB and DL method of gating. AveIP images of 10 phase binned image sets were generated and ITVs were delineated. Results: The maximum absolute percent differences between ITVaveand ITVthfor DL and DB methods were 15.91% and 4.94 % respectively for target motion of 5 mm in AP with 15 mm S-I direction. When the S-I motion was decreased to 10 mm, the observed % difference of the ITVs were also decreased to 12.5% and 0.3% for DL and DB method. When the lateral [L-R] motion was varied from 0 mm to 5 mm for S-I motion of 5 mm to 15 mm, the differences in the ITVs were significant (P = 0.004) with the maximum absolute percent difference of 18.61% and 4.94 % for DL and DB gating. With the simultaneous motion of the target in all the 3 directions, the difference in the reconstructed ITVs were statistically significant for DL method (P = 0.0002) and insignificant for DB method (P = 0.06) with an average increase of 10% in ITVDL against 2% in the ITVDB. The difference in ITVDL was significant for the target motion above 3 mm in A-P and L-R directions for S-I movement of above 10 mm (P = 0.0002). However, for low excursions of the target movement, no significant difference in the ITVs were observed (P > 0.06). In general, ITVDBs were closer to the ITVth (within 7.8%) than ITVDL (18.61%). Conclusion: The results showed that the DL method is an effective way of image sorting in 4D acquisition for smaller target excursion. When the target motion exceeds 3 mm in A-P and L-R directions with S-I more than 10 mm, DB method is the choice due to its accuracy in reproducing the absolute target volume.


How to cite this article:
Holla R, Khanna D, Barsing S, Pillai BK, Ganesh T. Investigation of internal target volumes using device and deviceless four-dimensional respiratory monitoring systems for moving targets in four-dimensional computed tomography acquisition.J Med Phys 2019;44:77-83


How to cite this URL:
Holla R, Khanna D, Barsing S, Pillai BK, Ganesh T. Investigation of internal target volumes using device and deviceless four-dimensional respiratory monitoring systems for moving targets in four-dimensional computed tomography acquisition. J Med Phys [serial online] 2019 [cited 2019 Jun 26 ];44:77-83
Available from: http://www.jmp.org.in/article.asp?issn=0971-6203;year=2019;volume=44;issue=2;spage=77;epage=83;aulast=Holla;type=0