Journal of Medical Physics
ORIGINAL ARTICLE
Year
: 2017  |  Volume : 42  |  Issue : 1  |  Page : 9--13

Measurement of total scatter factor for stereotactic cones with plastic scintillation detector


Suresh H Chaudhari1, Rishabh Dobhal2, Rajesh A Kinhikar3, Sudarshan S Kadam3, Deepak D Deshpande3 
1 Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai, Maharashtra, India
2 Department of Radiation Oncology, Batra Hospital and Medical Research Centre, New Delhi, India
3 Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India

Correspondence Address:
Suresh H Chaudhari
Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai - 400 614, Maharashtra
India

Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.


How to cite this article:
Chaudhari SH, Dobhal R, Kinhikar RA, Kadam SS, Deshpande DD. Measurement of total scatter factor for stereotactic cones with plastic scintillation detector.J Med Phys 2017;42:9-13


How to cite this URL:
Chaudhari SH, Dobhal R, Kinhikar RA, Kadam SS, Deshpande DD. Measurement of total scatter factor for stereotactic cones with plastic scintillation detector. J Med Phys [serial online] 2017 [cited 2017 May 23 ];42:9-13
Available from: http://www.jmp.org.in/article.asp?issn=0971-6203;year=2017;volume=42;issue=1;spage=9;epage=13;aulast=Chaudhari;type=0