Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 299  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 45  |  Issue : 2  |  Page : 116-122

Monte carlo calculation of the energy spectrum of a 6 MeV electron beam using penetration and energy loss of positrons and electrons code


1 Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Brazil; Department of Physics, National University of San Agustín, Arequipa, Peru
2 Department of Basic Biomedical Sciences, Faculty of Health Sciences, University of Magdalena, Santa Marta, Colombia
3 Center for Natural and Human Sciences, Federal University of ABC, Brazil
4 Department of Physics, National University of San Agustín, Arequipa, Peru

Correspondence Address:
Prof. Danny Giancarlo Apaza Veliz
Department of Physics, Faculty of Philosophy, Sciences and Letters, University of Sao Paulo

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_104_19

Rights and Permissions

Background: The limited bibliographic existence of research works on the use of Monte Carlo simulation to determine the energy spectra of electron beams compared to the information available regarding photon beams is a scientific task that should be resolved. Aims: In this work, Monte Carlo simulation was performed through the PENELOPE code of the Sinergy Elekta accelerator head to obtain the spectrum of a 6 MeV electron beam and its characteristic dosimetric parameters. Materials and Methods: The central-axis energy spectrum and the percentage depth dose curve of a 6 MeV electron beam of an Elekta Synergy linear accelerator were obtained by using Monte Carlo PENELOPE code v2014. For this, the linear accelerator head geometry, electron applicators, and water phantom were simplified. Subsequently, the interaction process between the electron beam and head components was simulated in a time of 86.4x104 s. Results: From this simulation, the energy spectrum at the linear accelerator exit window and the surface of the phantom was obtained, as well as the associated percentage depth dose curves. The validation of the Monte Carlo simulation was performed by comparing the simulated and the measured percentage depth dose curves via the gamma index criterion. Measured percentage depth- dose was determined by using a Markus electron ionization chamber, type T23343. Characteristic parameters of the beam related with the PDD curves such as the maximum dose depth (R100), 90% dose depth (R90), 90% dose depth or therapeutic range (R85), half dose depth (R50), practical range (Rp), maximum range (Rmax), surface dose (Ds), normalized dose gradient (G0) and photon contamination dose (Dx) were determined. Parameters related with the energy spectrum, namely, the most probable energy of electrons at the surface (Ep,0) and electron average energy (E0) were also determined. Conclusion: It was demonstrated that PENELOPE is an attractive and accurate tool for the obtaining of dosimetric parameters of a medical linear accelerator since it can reliably reproduce important clinical data such as the energy spectrum, depth dose, and dose profile.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed219    
    Printed7    
    Emailed0    
    PDF Downloaded50    
    Comments [Add]    

Recommend this journal