Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 86  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 45  |  Issue : 1  |  Page : 1-6

Volumetric arc therapy treatment plan dosimetry correction method to account patient weight loss during a course of radiation therapy


1 Department of Radiation Oncology, Washington Adventist Hospital, Takoma Park, MD, USA
2 Department of Radiotherapy, Cancer Center London, Wimbledon, London, UK
3 Department of Radiation Oncology, Manipal Hospital, New Delhi, India

Correspondence Address:
Dr. Harold DSouza
Department of Radiation Oncology, Washington Adventist Hospital, 7600 Carroll Avenue, Takoma Park, MD
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_86_19

Rights and Permissions

Aim: This study aims to validate volumetric arc therapy (VMAT) plan correction method for a patient's lost weight during the course of radiotherapy. Materials and Methods: VMAT plans of prostate and head and neck cancers were considered to evaluate dosimetric effects due to external surface changes caused by patient's weight loss during treatment. Accepted VMAT treatment plan was recalculated on the planning computed tomography (CT) with a newly created external contour from cone-beam CT and was compared with the original plan. Monitor unit (MU) correction was applied based on a simple formalism, and doses were recalculated. Dose statistics were compared with the original plan. Ten patients with significant weight loss were considered to validate proposed MU correction method by comparing the dose statistics before and after MU corrections. Results: We observed 3.7%–5.2% change in the plan maximum dose for one cm change in path length to isocenter with increased planning target volume dose, D95 by 4%. The organs at risk (OAR) doses increased as high as 6.8%. Using MU correction method, target volume and OARs dose changes were reduced to <1% when compared with the original plan. The correction method brought down the maximum plan dose and volume of 95% isodose (V95) cloud below an acceptable range of 1%–2% in 10 patients treatment plans. Conclusion: Image-guided radiation therapy process detects the weight loss, which affects the treatment plan's dose distribution and should be corrected. Applying the correction method described here keeps the patient dosimetry within 1% of the original plan, which is clinically acceptable. The process of plan dosimetry correction to address weight loss can be completed within 30 min without repeating imaging and planning process.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1183    
    Printed24    
    Emailed0    
    PDF Downloaded451    
    Comments [Add]    

Recommend this journal