Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 254  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 44  |  Issue : 1  |  Page : 16-20

Validation of three-dimensional electronic portal imaging device-based PerFRACTION™ software for patient-specific quality assurance


1 Department of Radiation Oncology, The Cancer Centre Eastern Caribbean, St. John's, Antigua
2 Sun Nuclear Corporation, Melbourne, FL, USA
3 School of Clinical Medicine and Research, University of West Indies, Nassau, The Bahamas
4 Vagelos College of Physicians and Surgeons, Columbia University, New York City, New York, USA
5 Department of Medical Physics, BC Cancer Agency-Abbotsford Cancer Center, British Columbia, Canada

Correspondence Address:
Dr. Ramani Ramaseshan
Department of Medical Physics, BC Cancer Agency-Abbotsford Cancer Center, British Columbia V2S 0C2
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_76_18

Rights and Permissions

Purpose: PerFRACTION™ is a three-dimensional (3D) in vivo electronic portal imaging device-based dosimetry software. To validate the software, three phantoms with different inserts (2D array, ionization chamber, and inhomogeneity materials) were constructed to evaluate point dose and fluence map. Materials and Methods: Phantoms underwent independent computed tomography simulation for planning and received repetitive fractions of volumetric modulated arc therapy, simulating prostate treatment. Fluence and absolute point dose measurements, PerFRACTION™ reconstructed doses, and the dose predictions of the planning system were compared. Results: There was concordance between ionization chamber and PerFRACTION™ 3D absolute point dose measurements. Close agreement was also obtained between X- and Y-axis dose profiles with PerFRACTION™ calculated doses, MapCHECK measured doses, and planning system predicted doses. Setup shifts significantly influenced 2D gamma passing rates in PerFRACTION™ software. Conclusions: PerFRACTIONTM appears reliable and valid under experimental conditions in air and with phantoms.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed771    
    Printed52    
    Emailed0    
    PDF Downloaded57    
    Comments [Add]    

Recommend this journal