Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 556  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 43  |  Issue : 4  |  Page : 255-263

Imaging and dosimetric study on direct flat-panel detector-based digital mammography system


1 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai, Maharashtra, India
2 Homi Bhabha National Institute; Technical Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra, India

Correspondence Address:
Mrs. Reena Sharma
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT and CRS, Anushakti Nagar, Mumbai - 400 094, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_64_18

Rights and Permissions

Introduction: Image quality of digital mammography system is generally defined by three primary physical parameters, namely, contrast, resolution, and noise. Quantification of these metrics can be done by measuring objective image quality parameters defined as contrast-to-noise ratio (CNR), modulation transfer function (MTF), and noise power spectra (NPS). Materials and Methods: In the present study, various imaging metrics such as CNR, contrast detail resolution, MTF, and NPS were evaluated for a direct flat-panel detector-based digital mammography system following the European Guidelines. Furthermore, system performance relating to both image quality and doses were evaluated using figure of merit (FOM) in terms of CNR2/mean glandular dose (MGD) under automatic exposure control (AEC) and clinically used OPDOSE operating mode. Results and Conclusion: Under AEC mode, FOM values for the 4.5 cm thick BARC polymethyl methacrylate (PMMA) phantom were found to be 15.02, 15.88, and 19.82 at Mo/Mo, Mo/Rh, and W/Rh target/filter (T/F), respectively. Under OPDOSE mode, FOM values were found to 65.32, 11.80, and 1.14 for the BARC PMMA phantom thickness of 2, 4.5, and 8 cm, respectively. Under OPDOSE mode, the calculated MGD values for three Computerized Imaging Reference Systems slab phantoms having total thickness of 7 cm were observed to be 3.03, 2.32, and 1.75 mGy with glandular/adipose tissue compositions of 70/30, 50/50, and 30/70, respectively, whereas for the 2–8-cm thick BARC PMMA phantom, the calculated MGDs were found to be in the range of 0.57–3.32 mGy. All the calculated MGDs values were found to be lower than the acceptable level of dose limits provided in European Guidelines.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed236    
    Printed4    
    Emailed0    
    PDF Downloaded35    
    Comments [Add]    

Recommend this journal