Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 423  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 43  |  Issue : 3  |  Page : 168-172

Incidence of suboptimal applicator placement and the resulting dosimetric impact in image-based intracavitary brachytherapy


Department of Radiation Oncology, Government Royapettah Hospital, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. Ramya Rangarajan
2B, Maan Sarovar Kalpana Apartments, 37, Hospital Road, Saidapet, Chennai - 600 015, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_28_18

Rights and Permissions

Aim: With the advent of computed tomography (CT)-based brachytherapy, it is possible to view the appropriate placement of the applicator within the uterine canal and detect uterine perforation. In this study, the incidence of suboptimal placement of the intracavitary applicator and the resulting dosimetric impact were analyzed and compared with a similar set of ideal applicator placement. Materials and Methods: CT datasets of 282 (141 patients) high dose rate brachytherapy insertions between January and April 2016 were analyzed. The target volumes and organs at risk (OAR) were contoured as per the Groupe Européen de Curiethérapie European Society of Therapeutic Radiation Oncology guidelines. The position of the applicator in the uterine cavity was analyzed for each application. Results: The suboptimal insertion rate was 11.7%. There were 26 perforations and 7 subserosal insertions. The most common site of perforation was through the posterior wall of the uterus (42.4%). Fundus perforation and anterior wall perforation were seen in 24.2% and 12.1% of patients, respectively. The average dose to 90% of the target volume (D90 to high-risk clinical target volume) was the highest (9.15 Gy) with fundal perforation. Average dose to 2 cc (D2cc) bladder was highest for fundus perforation (7.65 Gy). The average dose received by 2 cc of rectum (D2cc) was highest (4.49 Gy) with posterior wall perforation. The average D2cc of the sigmoid was highest with anterior perforation (3.18 Gy). Conclusion: In order to achieve better local control and to decrease doses to OAR, it is important to perform a technically accurate applicator placement. A cost-effective, real-time image guidance modality like ultrasound is recommended for all insertions to ensure optimal applicator insertion.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed186    
    Printed1    
    Emailed0    
    PDF Downloaded36    
    Comments [Add]    

Recommend this journal