Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 282  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 43  |  Issue : 3  |  Page : 147-154

A dose falloff gradient study in RapidArc planning of lung stereotactic body radiation therapy


1 Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
2 Memorial Hospital, Chattanooga, TN, USA
3 Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA

Correspondence Address:
Dr. Ganesh Narayanasamy
Department of Radiation Oncology, University of Arkansas for Medical Sciences, Slot 771, 4301 W Markham St, Little Rock, AR - 72205
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_38_18

Rights and Permissions

Introduction: Radiation Therapy Oncology Group (RTOG) report #0813 and 0915 recommends using D2cmand R50%as plan quality metrics for evaluation of normal tissue sparing in stereotactic body radiation therapy (SBRT) of lung lesion. This study introduces dose falloff gradient (DFG) as a tool for analyzing the dose beyond the planning target volume (PTV) extending into normal tissue structures. In ascertaining the impact of PTV size and SBRT planning techniques in DFG, this study questions the independence of the RTOG recommended metrics. Materials and Methods: In this retrospective study, 41 RapidArc lung SBRT plans with 2 or 3 complete or partial arcs were analyzed. PTV volumes ranged between 5.3 and 113 cm3 and their geographic locations were distributed in both lungs. 6MV, 6 MV-FFF, 10 MV, or 10 MV-FFF energies were used. RTOG-0915 metrics conformity index, homogeneity index, D2cm, R50%, and HDlocwere evaluated. DFG was computed from the mean and maximum dose in seven concentric 5 mm wide rings outside the PTV. DFG was investigated against the volume of normal lung irradiated by 50% isodose volume. Treatment plans with alternate energy and couch rotations were generated. Results: The dose falloff beyond PTV was modeled using a double exponential fit and evaluated for relationship with intermediate lung dose. Photon energy and beam configuration had a minimal impact on the dose falloff outside. The product of normalized D2cmand R50%was estimated to have a slowly varying value. Conclusions: Dose falloff outside PTV has been studied as a function of radial distance and ascertained by intermediate dose to normal lung. DFG can serve as a complementary plan quality metric.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed282    
    Printed4    
    Emailed0    
    PDF Downloaded38    
    Comments [Add]    

Recommend this journal