Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 72  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 43  |  Issue : 2  |  Page : 93-99

Validation of a software upgrade in a monte carlo treatment planning system by comparison of plans in different versions


1 Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab; Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
2 Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
3 Department of Radiotherapy, Medanta The Medicity Hospital, Gurgaon, Haryana, India
4 Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India

Correspondence Address:
Mr. P Mohandass
Department of Radiation Oncology, Fortis Hospital, Sector-62, Phase 8, SAS Nagar, Mohali - 160 062, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_7_18

Rights and Permissions

Purpose: Validation of a new software version of a Monte Carlo treatment planning system through comparing plans generated by two software versions in volumetric-modulated arc therapy (VMAT) for lung cancer. Materials and Methods: Three patients who were treated with 60 Gy/30 fractions in Elekta Synergy™ linear accelerator by VMAT technique with 2% statistical uncertainty (SU) were chosen for the study. Multiple VMAT plans were generated using two different software versions of Monaco treatment planning system TPS (V5.10.02 and V5.11). By keeping all other parameters constant, originally accepted plans were recalculated for the SUs of 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, the metrics compared were conformity Index (CI), homogeneity Index (HI), dose coverage to planning target volume (PTV), organ at risk (OAR) doses to spinal cord, pericardium, bilateral lungs-PTV, esophagus, liver, normal tissue integral dose (NTID), volumes receiving dose >5 and >10 Gy, calculation time (tCT), and gamma pass rates. Results: In both versions, CI and HI improved as the SU increased from 0.5% to 5%. No significant dose difference was observed in Dmean to PTV, bilateral lungs-PTV, pericardium, esophagus, liver, normal tissue volume receiving >5, and >10 Gy and NTID. It was observed that while the tCT and gamma pass rates decreased, the maximum dose to PTV increased as the SU increased. No other significant dose differences were observed between the two MC versions compared. Conclusion: For lung VMAT plans, in both versions, SU could be accepted up to 3% per plan with reduced tCT without compromising plan quality and deliverability by accepting variations in point dose and an inhomogeneous dose within the target. The plan quality of Monaco™V5.10.02 was similar to Monaco™TPS-V5.11 except for tCT.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed623    
    Printed13    
    Emailed0    
    PDF Downloaded92    
    Comments [Add]    

Recommend this journal