Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 315  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
TECHNICAL NOTE
Year : 2018  |  Volume : 43  |  Issue : 2  |  Page : 100-105

A homogeneous water-equivalent anthropomorphic phantom for dosimetric verification of radiotherapy plans


1 Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu; Department of Radiation Oncology, Nagarjuna Hospital, Vijayawada, Andhra Pradesh, India
2 Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
3 Department of Radiation Oncology, Fortis Hospital, New Delhi, India
4 Department of Radiotherapy, Government General Hospital, Guntur, Andhra Pradesh, India

Correspondence Address:
Dr. Sureka Chandra Sekaran
Department of Medical Physics, Bharathiar University, Coimbatore - 641 046, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_123_17

Rights and Permissions

Water is treated as radiological equivalent to human tissue. While this seems justified, there is neither mathematical proof nor sufficient experimental evidence that a water phantom can be treated as equivalent to human tissue. The aim of this work is to simulate and validate a water phantom that is tissue equivalent in terms of the dosimetric characteristics of both water and human tissue Dynamic, intensity-modulated radiotherapy plans for two head and neck, one brain, one pelvis, and three lung/mediastinum cases were chosen for this study. Using a treatment planning system (TPS) (Eclipse, Varian Medical System, Polo Alto, CA, USA) and Anisotropic Analytic Algorithm in a grid resolution of 5 mm × 5 mm, a patient-equivalent water phantom was calculated from all rays in the isocentric plane as an array of water equivalent depths (dWE). These rays were plotted versus isocentric separation and ray-tracing direction.Planar doses were compared between the isocentric plane in the patient computed tomography and the water equivalent phantom using gamma criteria of 2%–2 mm and 3%–3 mm. Except in one lung case, >95% gamma agreement was seen when using 3%–3 mm and >90% pass rate was seen when using 2%–2 mm. For head and neck cases, gamma-fail was restricted to the periphery. For mediastinum cases, gamma-fail was restricted to the lungs. This study demonstrates that a heterogeneous patient can be converted to a water phantom with comparable dosimetric characteristics and disagreements restricted to the lung area for both modulated and open beams. Potential sources of error include the dWEcalculation and TPS dose computation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed247    
    Printed4    
    Emailed0    
    PDF Downloaded77    
    Comments [Add]    

Recommend this journal