Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 230  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
TECHNICAL NOTE
Year : 2017  |  Volume : 42  |  Issue : 2  |  Page : 80-85

A dosimetric study on slab-pinewood-slab phantom for developing the heterogeneous chest phantom mimicking actual human chest


1 Roentgen-SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh; Department of Physics, Mewar University, Chittorgarh, Rajasthan, India
2 Department of Physics, Mewar University, Chittorgarh, Rajasthan, India
3 Department of Radiotherapy, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Om Prakash Gurjar
Roentgen-SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore - 453 111, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_125_16

Rights and Permissions

The aim is to study the density, isodose depths, and doses at different points in slab-pinewood-slab (SPS) phantom, solid phantom SP34 (made up of polystyrene), and chest level of actual patient for developing heterogeneous chest phantom mimicking thoracic region of human body. A 6 MV photon beam of field size of 10 cm×10 cm was directed perpendicular to the surface of computed tomography (CT) images of chest level of patient, SPS phantom, and SP34 phantom. Dose was calculated using anisotropic analytical algorithm. Hounsfield units were used to calculate the density of each medium. Isodose depths in all the three sets of CT images were measured. Variations between planned doses on treatment planning system (TPS) and measured on linear accelerator (LA) were calculated for three points, namely, near slab-pinewood interfaces (6 and 18 cm depths) and 10 cm depth in SPS phantom and at the same depths in SP34 phantom. Density of pinewood, SP34 slabs, chest wall, lung, and soft tissue behind lung was measured as 0.329 ± 0.08, 0.999 ± 0.02, 0.898 ± 0.02, 0.291 ± 0.12, and 1.002 ± 0.03 g/cc, respectively. Depths of 100% and 90% isodose curves in all the three sets of CT images were found to be similar. Depths of 80%, 70%, 60%, 50%, and 40% isodose lines in SPS phantom images were found to be equivalent to that in chest images, while it was least in SP34 phantom images. Variations in doses calculated at 6, 10, and 18 cm depths on TPS and measured on LA were found to be 0.36%, 1.65%, and 2.23%, respectively, in case of SPS phantom, while 0.24%, 0.90%, and 0.93%, respectively, in case of SP34 slab phantom. SPS phantom seemed equivalent to the chest level of human body. Dosimetric results of this study indicate that patient-specific quality assurance can be done using chest phantom mimicking thoracic region of human body, which has been fabricated using polystyrene and pinewood.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed875    
    Printed24    
    Emailed0    
    PDF Downloaded102    
    Comments [Add]    

Recommend this journal