Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 407  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 42  |  Issue : 1  |  Page : 9-13

Measurement of total scatter factor for stereotactic cones with plastic scintillation detector


1 Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai, Maharashtra, India
2 Department of Radiation Oncology, Batra Hospital and Medical Research Centre, New Delhi, India
3 Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India

Correspondence Address:
Suresh H Chaudhari
Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai - 400 614, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.JMP_114_16

Rights and Permissions

Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed270    
    Printed12    
    Emailed0    
    PDF Downloaded24    
    Comments [Add]    

Recommend this journal