Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 402  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 41  |  Issue : 2  |  Page : 85-91

Surface dose measurements and comparison of unflattened and flattened photon beams


1 Division of Medical Physics, School of Advanced Sciences, VIT University, New Delhi, India
2 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
3 Department of Radiation Oncology, Krishna Institute of Sciences, Hyderabad, Telangana, India
4 Department of Radiation Oncology, BGS Global Hospital, Bengaluru, Karnataka, India

Correspondence Address:
Ashokkumar Sigamani
Division of Medical Physics, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.181648

Rights and Permissions

The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB) and flattening filter free (FFF) therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD) is less significant in FFF beams when compared to the flattened beams at extended SSDs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3285    
    Printed95    
    Emailed1    
    PDF Downloaded227    
    Comments [Add]    

Recommend this journal