Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 181  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
REVIEW ARTICLE
Year : 2016  |  Volume : 41  |  Issue : 1  |  Page : 3-11

Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning


1 Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
2 Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH 44255, USA
3 Department of Radiation Oncology, University of California- Los Angeles School of Medicine, CA 90095, USA
4 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA

Correspondence Address:
Indra J Das
Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.177277

Rights and Permissions

Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient’ body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2022    
    Printed67    
    Emailed0    
    PDF Downloaded126    
    Comments [Add]    

Recommend this journal