Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 240  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 40  |  Issue : 2  |  Page : 74-79

Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media


1 Department of Medical Radiation, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
2 Department of Radiotherapy and Oncology, Shiraz University of Medical Sciences, Shiraz; Radiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Medical Radiation, School of Mechanical Engineering, Shiraz University, Shiraz; Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
4 Department of Radiotherapy and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence Address:
Dr. M A Mosleh-Shirazi
Physics Unit, Department of Radiotherapy and Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz 71936-13311
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.158676

Rights and Permissions

To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1701    
    Printed21    
    Emailed0    
    PDF Downloaded119    
    Comments [Add]    

Recommend this journal