Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 151  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 39  |  Issue : 2  |  Page : 98-105

Potential of thermal imaging as a tool for prediction of cardiovascular disease


1 Department of Biomedical Engineering, SRM University, Chennai, Tamil Nadu, India
2 Department of Quality Assurance Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Chennai, Tamil Nadu, India
3 Department of Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Chennai, Tamil Nadu, India

Correspondence Address:
M Anburajan
Department of Biomedical Engineering, SRM University, Chennai, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.131283

Rights and Permissions

Vascular dysfunction is associated with onset of cardiovascular disease (CVD). Its effect is reflected as temperature change on the skin. The aim of this work was to test the potential of thermal imaging as cost effective screening tool for prediction of CVD. Thermal imaging of various parts of the subject (N = 80, male/female =44/36, aged 25-75 years) was done using noncontact infrared (IR) camera. In each subject, total cholesterol (TC; mg/dl) and high-density lipoprotein (HDL, mg/dl) were measured according to standard biochemical analysis. Based on National Cholesterol Education Program ATP III criteria, subject with known CVD (N = 16) and age- and sex- matched normal subjects (N = 21) were included in the study. The average surface temperature of various parts from head to toe was calculated and statistical analysis was performed between the groups. In the total population (N = 37), correlation study shows TC (mg/dl) was correlated with measured surface temperature of the following regions: Temporal left (r = −0.316) and right (r = −0.417), neck left (r = 0.347) and right (r = −0.410), and hand left (r = 0.387). HDL (mg/dl) was found to be correlated with measured surface temperature of the following regions: Temporal left (r = 0.445) and right (r = 0.458), hand left (r = −0.470), and foot anterior left (r = −0.332) and right (r = −0.336). Temperature asymmetry was more significant in upper extremity in CVD group. Using the surface temperature, regression models were calculated for noninvasive estimation of TC and HDL. The predictive ability of measured surface temperature for TC and HDL was 60%. The model for noninvasive estimation gave sensitivity and specificity value of 79 and 83% for TC and 78 and 81% for HDL, respectively. Thus, the surface temperature can be one of the screening tools for prediction of CVD. The limitation of the present study is also discussed under future work.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1488    
    Printed56    
    Emailed1    
    PDF Downloaded72    
    Comments [Add]    

Recommend this journal