Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 77  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 39  |  Issue : 2  |  Page : 93-97

Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro


1 Medical Physics Research Center; Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence Address:
Mohammad Taghi Bahreyni Toossi
Department of Medical Physics, School of Medicine, Mashhad University of Medical Sciences, Mashhad
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.131282

Rights and Permissions

Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1224    
    Printed33    
    Emailed0    
    PDF Downloaded69    
    Comments [Add]    

Recommend this journal