Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 381  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
TECHNICAL NOTE
Year : 2014  |  Volume : 39  |  Issue : 1  |  Page : 44-49

Radiation dose verification using real tissue phantom in modern radiotherapy techniques


1 Department of Physics, Mewar University, Chittorgarh, Rajasthan; Roentgen-SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
2 Department of Radiotherapy, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
3 Roentgen-SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
4 Department of Physics, Mewar University, Chittorgarh, Rajasthan; Department of Radiotherapy, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India

Correspondence Address:
Om Prakash Gurjar
(Ph. D. Scholar - Mewar University), Asstt. Professor (Medical Physics) cum RSO (III) Roentgen-SAIMS Radiation Oncology Centre, Sri Aurobindo Institute of Medical Sciences, Indore - 453 111, Madhya Pradesh
India
Login to access the Email id

Source of Support: Equipment support from Roentgen Oncologic Solutions Pvt. Ltd, and Sri Aurobindo Institute of Medical Sciences, Indore, India, Declaration: This paper will be presented for best paper award in Indian cancer congress (ICC).2013 to be held at New Delhi from 20th.24th Nov., 2013, We have informed to ICC scientific committee not to publish in their journal, and also have informed them that this paper has been accepted in JMP,, Conflict of Interest: None


DOI: 10.4103/0971-6203.125504

Rights and Permissions

In vitro dosimetric verification prior to patient treatment has a key role in accurate and precision radiotherapy treatment delivery. Most of commercially available dosimetric phantoms have almost homogeneous density throughout their volume, while real interior of patient body has variable and varying densities inside. In this study an attempt has been made to verify the physical dosimetry in actual human body scenario by using goat head as "head phantom" and goat meat as "tissue phantom". The mean percentage variation between planned and measured doses was found to be 2.48 (standard deviation (SD): 0.74), 2.36 (SD: 0.77), 3.62 (SD: 1.05), and 3.31 (SD: 0.78) for three-dimensional conformal radiotherapy (3DCRT) (head phantom), intensity modulated radiotherapy (IMRT; head phantom), 3DCRT (tissue phantom), and IMRT (tissue phantom), respectively. Although percentage variations in case of head phantom were within tolerance limit (< ± 3%), but still it is higher than the results obtained by using commercially available phantoms. And the percentage variations in most of cases of tissue phantom were out of tolerance limit. On the basis of these preliminary results it is logical and rational to develop radiation dosimetry methods based on real human body and also to develop an artificial phantom which should truly represent the interior of human body.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2073    
    Printed54    
    Emailed4    
    PDF Downloaded149    
    Comments [Add]    

Recommend this journal