Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 707  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2011  |  Volume : 36  |  Issue : 1  |  Page : 35-39

To study tumor motion and planning target volume margins using four dimensional computed tomography for cancer of the thorax and abdomen regions


Department of Radiation Oncology, P D Hinduja National Hospital and MRC, Mumbai, India

Correspondence Address:
Sudesh Deshpande
Department of Radiation Oncology, P D Hinduja National Hospital and MRC, Veer Savarkar Marg, Mahim, Mumbai - 400 016
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.75470

Rights and Permissions

In this study, four dimensional computed tomography (4DCT) scanning was performed during free breathing on a 16-slice Positron emission tomography PET /computed tomography (CT) for abdomen and thoracic patients. Images were sorted into 10 phases based on the temporal correlation between surface motion and data acquisition with an Advantage Workstation. Gross tumor volume gross tumor volume (GTV) s were manually contoured on all 10 phases of the 4DCT scan. GTVs in the multiple CT phases were called GTV4D. GTV4D plus an isotropic margin of 1.0 cm was called CTV4D. Two sets of planning target volume (PTV) 4D (PTV4D) were derived from the CTV4D, i.e. PTV4D 2cm = CTV4D plus 1 cm setup margin (SM) and 1 cm internal margin (IM) and PTV4D 1.5cm = CTV4D plus 1 cm SM and 0.5cm IM. PTV3D was derived from a CTV3D of the helical CT scan plus conventional margins of 2 cm. PTV gated was generated only selecting three CT phases, with a total margin of 1.5 cm. All four volumes were compared. To quantify the extent of the motion, we selected the two phases where the tumor exhibited the greatest range of motion. We also studied the effect of different PTV volumes on dose to the surrounding critical structures. Volume of CTV4D was greater than that of CTV3D. We found, on an average, a reduction of 14% volume of PTV4D 1.5cm as compared with PTV3D and reduction of 10% volume of PTV gated as compared with PTV4D 1.5cm . We found that 2 cm of margin was inadequate if true motion of tumor was not known. We observed greater sparing of critical structures for PTVs drawn taking into account the tumor motion.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2219    
    Printed161    
    Emailed0    
    PDF Downloaded141    
    Comments [Add]    

Recommend this journal