Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of Association of Medical Physicists of India      
 Users online: 475  Home  EMail this page Print this page Decrease font size Default font size Increase font size 


 
ORIGINAL ARTICLE
Year : 2008  |  Volume : 33  |  Issue : 2  |  Page : 60-63
 

Optimization of dose distribution with multi-leaf collimator using field-in-field technique for parallel opposing tangential beams of breast cancers


Department of Radiotherapy, National Oncology Center, The Royal Hospital, Muscat, Oman

Date of Submission05-Jan-2008
Date of Acceptance24-Apr-2008

Correspondence Address:
R Ravichandran
Department of Radiotherapy, National Oncology Center, The Royal Hospital, P.O. Box: 1331, Postal Code:111, Muscat
Oman
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.41194

Rights and Permissions

 

   Abstract 

3 Dimensional Conformal Radiotherapy (3D-CRT) planning software helps in displaying the 3D dose distribution at different levels in the planned target volume (PTV). Physical or dynamic wedges are commonly applied to obtain homogeneous dose distribution in the PTV. Despite all these planning efforts, there are about 10% increased dose hot spots encountered in final plans. To overcome the effect of formation of hot spots, a manual forward planning method has been used. In this method, two more beams with multi-leaf collimator (MLC) of different weights are added in addition to medial and lateral wedged tangent beams. Fifteen patient treatment plans were taken up to check and compare the validity of using additional MLC fields to achieve better homogeneity in dose distributions. The resultant dose distributions with and without presence of MLC were compared objectively. The dose volume histogram (DVH) of each plan for the PTV was evaluated. The 3D dose distributions and homogeneity index (HI) values were compared. The 3D dose maximum values were reduced by 4% to 7%, and hot spots assumed point size. Optimizations of 3D-CRT plans with MLC fields improved the homogeneity and conformability of dose distribution in the PTV. This paper outlines a method of obtaining optimal 3D dose distribution within the PTV in the 3D-CRT planning of breast cases.


Keywords: 3D-CRT, dose volume histogram, homogeneity index, planned target volume


How to cite this article:
Murthy K K, Sivakumar S S, Davis C A, Ravichandran R, El Ghamrawy K. Optimization of dose distribution with multi-leaf collimator using field-in-field technique for parallel opposing tangential beams of breast cancers. J Med Phys 2008;33:60-3

How to cite this URL:
Murthy K K, Sivakumar S S, Davis C A, Ravichandran R, El Ghamrawy K. Optimization of dose distribution with multi-leaf collimator using field-in-field technique for parallel opposing tangential beams of breast cancers. J Med Phys [serial online] 2008 [cited 2019 Jul 22];33:60-3. Available from: http://www.jmp.org.in/text.asp?2008/33/2/60/41194



   Introduction Top


The issue of radiation dose delivery to the chest wall after total mastectomy, as well as the treatment technique of conservative breast, remains complex. This is due to the irregularity in contour at the chest wall level and also varying thickness of lungs underneath. Randomized trials have indicated that radiation can improve the overall survival of patients, with a 25% to 30% 10-year risk of loco-regional relapse (LRR), treated with mastectomy and systemic treatment. [1],[2],[3],[4],[5]

The CT images with three-dimensional (3D) planning software help in displaying the dose variations at different levels below skin. Physical or dynamic wedges are commonly applied to correct for entrance obliquities. In conventional 3D-CRT for breast cancer, most commonly, either physical or dynamic wedges are used in two tangential fields to achieve optimal three-dimensional dose distribution within the minimal degree of dose inhomogeneity through forward treatment planning. The possibilities and the limits of commonly used techniques for irradiation of breast with two tangential fields in the supine position have been discussed in recent years. [6],[7],[8] The early and late complications of radiations are directly related to patient anatomy, total dose delivered, fractionation scheme, and radiation treatment technique. Several institutions have reported the use of different techniques to improve dose distribution within the breast. [9],[10]

In conventional method of planning, despite all planning efforts, there are about 10% increased dose hot spots encountered in final plans. In intensity-modulated radiotherapy (IMRT), with inverse planning or forward planning, it is possible to overcome this problem. [11] To overcome the effect of formation of hot spots, we have tried a manual forward planning method using MLC-optimized field-in-field technique. In this case, two more fields are added with multi-leaf collimator (MLC) of different weights in addition to plain medial and lateral wedged tangent beams. In this article, we have described the Methodology of treatment planning adopted for a typical case and furnished DVH comparison results of 15 cases planned with conventional technique of two parallel opposing tangential fields and MLC-optimized filed-in-field technique.


   Materials and Methods Top


Computerized 3D radiation treatment planning system (RTPS) Eclipse (version 6.5, Varian Ag, USA) was used for treatment planning. High energy linac Clinac 2300 CD (Varian Ag, USA) having 120-leaf millennium MLC was used for the breast field tangential treatments. Fifteen patient treatment plans were taken up to check and compare the validity of using additional MLC fields to achieve better homogeneity in dose distributions. The CT images of 5-mm thickness at different transverse sections away from midplane were taken to create a 3D image. Initially the 3D-CRT planning was done in the conventional way by using two parallel opposing tangential fields with or without wedges. Then two more subfields with MLC were added, and this field-in-field technique was used to smooth out the hot spots. The MLC positions and beam weightings were optimized by forward planning for reduction of hot spots and achievement of better homogeneous dose distribution.

Initially, medial and lateral tangent asymmetrical half beam block fields were designed, using SSD technique, with gantry angles that create a nondivergent posterior field edge and cover the targeted structure. The dose distribution of two fields was examined after normalization of the plan with a reference point with or without wedges, which gave optimal dose to the target volume. Field weightings were adjusted to achieve maximum possible uniform distribution in the target volume.

Then, two more open fields similar to tangential fields were created. The highest hot spot formed at the apex of a breast was projected in the BEV with isodose curves of 105% and above. The region was covered with the segments of MLC from one of the open tangential fields. A small weight was given to this field, and the plan was recalculated. Again the hot spots formed were projected in the BEV, and the region was covered with the segments of MLC from another open tangential field. Again a small weight was given to this field and the plan was recalculated for the distribution of the dose. The arrangement of MLC leaf positions used in two tangential fields is shown in [Figure 1]. Finally the dose distribution was optimized with the four fields by adjusting the leaf positions and weights of MLC fields. In cases of intact breast, symmetrical fields with SAD technique are used.

The 3D-max, mean, modal, and median dose values of 15 cases planned with conventional two tangential fields and MLC-optimized field-in-field technique were compared using their dose volume histograms . The homogeneity index (HI) for each plan was calculated using the following formula and the mean values were compared.

Homogeneity index (HI) = (Dose Max − Dose Min) / Dose Mean in PTV

The significance of HI is that a lesser value of HI indicates greater 3D dose homogeneity in the planned target volume (PTV).


   Results Top


The dose distributions obtained in a typical plan with and without usage of MLC in transverse midplane and sagittal plane are shown in [Figure 2] and [Figure 3] respectively. The plan comparison dose volume histograms (DVH) of the case planned are shown in [Figure 4]. The dose maximum was found reduced from 110% to 105%; and 3D median dose, from 103.1% to 101.8% - showing better distribution and coverage of dose in the PTV with MLC plan than with the simple wedge plan. The dose variation analysis result of 15 breast cases compared with dose volume histogram (DVH) values are shown in [Table 1]. The mean values of homogeneity index (HI) for the 15 plans with and without MLC were 0.9441 and 0.9762 respectively.


   Discussion Top


The cumulative and differential forms of plan comparison histograms shown in [Figure 4] clearly indicate that the 3D dose distribution is more confined to the PTV with the MLC-optimized field-in-field technique. The DVH curves show that the hot spot is reduced at the compromise of the PTV dose coverage. This is because the MLC segments not only reduce the hot spots but also reduce the mean dose to the PTV. But still the PTV modal and median doses are close to 100%, and a definite gain is achieved regarding dose homogeneity within the PTV coverage by using this technique. [Table 1] gives the difference of the dose distributions in the planned target volume (PTV) with conventional and MLC-optimized field-in-field techniques evaluated by score functions. The technique of MLC field reduced the 3D maximum dose by 4% to 7% (from 113% to 105%). In most of the plans, the dose maximum hot spots have become point doses, and the isodose levels in the range of 95% to 100% cover maximum PTV. The median maximum dose delivered reduced, varying from 0.3% to 3%. In this technique, less than 0%-2% of the treated volume received more than 105% of the prescribed dose compared to 7%-20% of the treated volume in the wedge plans without MLC fields. The technique clearly shows that the dose variation in the PTV becomes less than 5% of the prescribed dose. Hence it is expected that with this technique, the morbidity of skin reactions may be reduced.

The homogeneity index (HI) values also confirmed that the 3D dose distributions were more homogeneous within the PTV with the MLC fields, with a mean value of 0.9441 compared to 0.9762 for the conventional two tangential fields. Though the maximum, minimum, and mean doses were reduced in the 3D PTV with MLC fields, the percentage of reduction in maximum dose was more compared to that in minimum and mean doses. Therefore, the dose homogeneity was achieved with the MLC-optimized field-in-field technique. The results obtained in our study are similar and comparable with the earlier studies of 3D-CRT forward planning of IMRT for breast cases, which have indicated that the dose distribution with MLC treatment improves compared to that with conventional wedge plans [12],[13],[14],[15]


   Conclusion Top


Optimizations of 3D-CRT plans with MLC fields have improved the homogeneity and conformability of dose distribution in the target volume. The homogeneity index (HI) values also confirmed the better 3D dose homogeneity in the PTV with the MLC-optimized field-in-field technique. With this method, the maximum dose value and its coverage area in the PTV reduced considerably. The method helps to understand the role of MLC in overcoming 3D dose inhomogeneity in the 3D-CRT planning of breast cases.

 
   References Top

1.Overgaard M, Hansen PS, Overgaard J, Rose C, Andersson M, Bach F, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. N Engl J Med 1997;337:949-55.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]
2.Overgaard M, Jenson MB, Overgaard J, Hansen PS, Rose C, Andersson M, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancer 1999;353:1641-8.  Back to cited text no. 2    
3.Ragaz J, Jackson SM, Le N, Plenderleith IH, Spinelli JJ, Basco VE, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 1997;337:956-62.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]
4.Liljegren G, Holmberg L, Bergh J, Lindgren A, Tabαr L, Nordgren H, et al. 10 year results after sector resection with or without postoperative radiotherapy for stage 1 breast cancer: A randomized trial. J Clin Oncol 1999;17:2326-33.  Back to cited text no. 4    
5.Holli K, Saaristo R, Isola J, Joensuu H, Hakama M. Lumpectomy with or without postoperative radiotherapy for breast cancer with favorable prognostic features: Results of a randomized study. Br J Cancer 2001;84:164-9.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]
6.Krassin M, McCall A, King S, Olson M, Emami B. Evaluation of standard breast tangent technique: A dose-volume analysis of tangential irradiation using three dimentional tools. Int J Radiat Oncol Biol Phys 2000;47:327-33.  Back to cited text no. 6    
7.Leonardi MC, Brambilla MG, Zurrida S, Intra M, Frasson A, Severi G, et al. Analysis of irradiated lung and heart volumes using virtual simulation in postoperative treatment of stage 1 breast carcinoma. Tumori 2003;89:60-7.  Back to cited text no. 7    
8.Lu XQ, Sullivan S, Eggleston T, Holupka E, Bellerive M, Abner A, et al. A three-field breast treatment technique with precise geometric matching using multileaf collimator-equipped linear accelerators. Int J Radiat Oncol Biol Phys 2003;55:1420-31.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]
9.Cross MA, Elson HR, Aron BS. Breast conservation radiationtherapy technique for women with large breasts. Int J Radiat Oncol Biol Phys 1989;17:199-203.  Back to cited text no. 9  [PUBMED]  
10.Mazonakis M, Varveris H, Damilakis J, Theoharopoulos N, Gourtsoyiannis N. Radiation dose to conceptus resulting from tangential breast irradiation. Int J Radiat Oncol Biol Phys 2003;55:386-91.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]
11.Clifford Chao KS. Practical essentials of intensity modulated radiation therapy. Lippincott Williams and Wilkins Publication-2005. p. 238-54.  Back to cited text no. 11    
12.Arzu IV, Perkins GH, Antolac IA. Field-in-field target technique improves radiation dose homogeneity in breast conservation. Proc Am Radium Soc 2003;61:1441.  Back to cited text no. 12    
13.Vicini FA, Sharpe M, Kestin L, Martinez A, Mitchell CK, Wallace MF, et al. Optimizing breast cancer treatment efficacy with intensity- modulated radiotherapy. Int J Radiat Oncol Biol Phys 2002;54:1336-44.  Back to cited text no. 13  [PUBMED]  [FULLTEXT]
14.Evans PM, Donovan EM, Partridge M, Childs PJ, Convery DJ, Eagle S, et al. The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiather Oncol 2000;57:79-89.  Back to cited text no. 14    
15.Meier R, Hatton J, Mehta V. Forward planning breast IMRT: Early clinical experience. Int J Radiat Oncol Biol Phys 2003;57:S369.  Back to cited text no. 15    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1]


This article has been cited by
1 Breast cancer: Breast-conserving surgery and radiation therapy and comparison of radiotherapy techniques
Ramamoorthy Ravichandran,Zahid Al Mandhari
Medical Dosimetry. 2014;
[Pubmed] | [DOI]
2 Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy
H. Tanaka,S. Hayashi,H. Hoshi
Journal of Radiation Research. 2014;
[Pubmed] | [DOI]
3 Dosimetric comparison of intensity modulated radiotherapy isocentric field plans and field in field (FIF) forward plans in the treatment of breast cancer
Al.Rahbi, Z.S. and Mandhari, Z.A. and Ravichandran, R. and Al-Kindi, F. and Davis, C.A. and Bhasi, S. and Satyapal, N. and Rajan, B.
Journal of Medical Physics. 2013; 38(1): 22-29
[Pubmed]
4 Topical Hyaluronic Acid vs. Standard of Care for the Prevention of Radiation Dermatitis After Adjuvant Radiotherapy for Breast Cancer: Single-Blind Randomized Phase III Clinical Trial
International Journal of Radiation Oncology*Biology*Physics. 2011;
[VIEW] | [DOI]
5 Adoption of Intensity-Modulated Radiation Therapy for Breast Cancer in the United States
JNCI Journal of the National Cancer Institute. 2011;
[VIEW] | [DOI]



 

Top
Print this article  Email this article
Previous article Next article

    

 
   Search
 
   Next article
   Previous article 
   Table of Contents
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Article in PDF (121 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3676    
    Printed148    
    Emailed4    
    PDF Downloaded417    
    Comments [Add]    
    Cited by others 5    

Recommend this journal